ࡱ> kmj @ %bjbjPP =F::sf       8@\$Yd(ccccccc$gRki~c +++c  d___+  c_+c__\  _ eP:g(^4c)d0Yd^Xi?ih_4Dx,    i _D_Nccd OLista de Figuras Figure 1-1 Proceso de toma de decisiones y diseo para estructuras de evacuacin vertical 3 Figure 2-1 Amplitudes mximas computadas de tsunami en el Ocano ndico 11 Figure 2-2 Diagramas esquemticos del desplazamiento vertical resultando de una dislocacin de una falla subductiva: a) zona de ruptura lejos de la costa; y b)ruptura de zona adyacente a la costa con subsidencia costera 12 Figure 2-3 Expedientes de medidas martimas para el tsunami de 2004 en: Ta Phao Noi, Tailandia, mostrando la ola principal de depresin; y b) Tuticorin, India, mostrando la ola principal de elevacin 13 Figure 2-4 Altura de runup medidas en el tsunami de Okushuri en la costa de Inaho, mostrando que la altura de runup vara significativamente entre reas cercanas 14 Figure 2-5 Boceto de macareo y fotografa del tsunami de Nihonkai-Chubu de 1983 mostrando la formacin del macareo de este tsunami lejos de la costa 14 Figure 2-6 Boceto de una marejada y fotografa del tsunami de Nihonkai-Chubu de 1983 mostrando la formacin de una marejada 15 Figure 2-7 Secuencia de fotografas mostrando inundacin causada por runup del tsunami de Nihonkai-Chubu de 1983. 15 Figure 2-8 Grados de dao a edificios vs. altura de runup. 16 Figure 2-9 Faro de Scotch Cap destruido por el tsunami de las Islas Aleutianas de 1946 17 Figure 2-10 Destruccin total de un grupo de estructuras de Madera en la villa de Aonae, Okushiri, Japn (Tsunami de Okushiri de 1993) 18 Figure 2-11 Casas de playa con varios niveles de dao en El Popoyo, Nicaragua (Tsunami de Nicaragua de 1992) 18 Figure 2-12 Dao causado por el impacto de escombros (bote pesquero) en Aonae, Japn (Tsunami de Okushiri de 1993) 19 Figure 2-13 Ejemplos de estructuras de concreto reforzado que sobrevivieron el tsunami de Okushiri de 1993 19 Figure 2-14 Casa de playa de albailera simple daada en Devanaanpattinam, India (Tsunami del Ocano ndico del 2004). 20 Figure 2-15 Ejemplo de una mezquita de cocreto reforzado sobreviviente en Uleele, Banda Aceh 21 Figure 2-16 Ejemplos de escombros cargados por el tsunami del Ocano ndico del 2004 21 Figure 2-17 Dao a columnas de concreto no reforzadas por impacto de escombros 22 Figure 2-18 Dao a columna de esquina por formacin de dique de escombros 22 Figure 2-19 Erosin alrededor de cimientos llanos en el rea de Khao Lak 23 Figure 2-20 Dao por levantamiento a pisos y muelle de concreto prefabricado 23 Figure 2-21 Ejemplos de colapso structural por temblor fuerte antes de la inundacin de tsunami en Bandah Aceh: a) fallo en la coneccin de vigas y columnas; y b) fallo por nivel no reforzado 24 Figure 2-22 El edificio de apartamentos Gulf Tower sufri dao no estructural sustancial en el primer nivel, pero se mantuvo estructuralmente seguro 25 Figure 2-23 El edificio de oficinas Pass Christian con un sistema de pisos cast-in-place sufri dao no estuctural en los primeros dos niveles pero permaneci estructuralmente seguro 26 Figure 2-24 Condominio en Gulfport, Mississippi con daos de olas y marejadas a elementos no estructurales en el primer nivel pero sin ningn dao estructural reportado 26 Figure 2-25 Colapso progresivo de los pisos superiores de un estacionamiento por daos a las columnas de los niveles bajos causados por una barcaza-casino adyacente 27 Figure 2-26 Failure of prestressed piles due to damming effect of shipping container 28 Figure 2-27 Negative bending failure of a prestressed double-tee floor system due to uplift forces 29 Figure 2-28 Concrete frame of three-story apartment building that partially collapsed due to failure of the post-tensioned flat slab in the bay closest to the Gulf of Mexico 30 Figure 3-1 Coastal sites for site-specific tsunami inundation models for the Tsunami Forecasting System 33 Figure 3-2 Tsunami inundation modeling products for Seattle, Washington 35 Figure 3-3 Tsunami inundation map for Seattle, Washington produced and published by the state of Washington, using modeling products as guidance 35 Figure 3-4 Yaquina Bay, Oregon tsunami inundation map with three inundation lines 37 Figure 3-5 Tsunami elevations with a 90% probability of not being exceeded in 50 years 38 Figure 3-6 The 500-year tsunami map for Seaside, Oregon, depicting maximum have heights that are met or exceeded at an annual probability of 0.2% 39 Figure 4-1 Soil berm combined with a community open space. 46 Figure 4-2 Parking garage. Open structural systems allow water to pass through with minimal resistance, and interior ramps allow for easy ingress and vertical circulation 47 Figure 4-3 Sports complex. Designed for assembly use, this type of structure can accommodate circulation and service needs for large numbers of people 48 Figure 4-4 Hotel and convention complex. Meeting rooms, ballrooms, and exhibit spaces located above the tsunami inundation elevation can be used to provide areas of refuge. 48 Figure 4-5 Evacuation map for Waikiki, Hawaii, indicating use of existing buildings for vertical evacuation 49 Figure 5-1 Vertical evacuation refuge locations considering travel distance, evacuation behavior, and naturally occurring high ground 54 Figure 5-2 Site hazards adjacent to vertical evacuation structures 55 Figure 6-1 Seismic performance objectives linking building performance levels to earthquake hazard levels 66 Figure 6-2 Hydrostatic force distribution and location of resultant 71 Figure 6-3 Buoyant forces on an overall building with watertight lower levels 72 Figure 6-4 Hydrodynamic force distribution and location of resultant 73 Figure 6-5 Hydrodynamic impulsive and drag forces on components of a building subjected to inundation by a tsunami bore 75 Figure 6-6 Waterborne debris impact force 75 Figure 6-7 Maximum flow velocity of depth, d, at the ground elevation, z, and maximum runup elevation, R. 77 Figure 6-8 A definition sketch for upward buoyant force exerted on an elevated floor 79 Figure 6-9 Gravity loads exerted on an elevated floor with water retained by exterior walls during rapid drawdown 81 Figure 6-10 Impulsive and drag forces applied to an example building 83 Figure 6-11 Debris dam and drag forces applied to an example building 83 Figure 6-12 Tie force strategy 87 Figure 6-13 Detailing of reinforcing steel for potential loss of a supporting column 87 Figure 6-14 Missing column strategy 89 Figure 7-1 Effect of breakaway walls on waves 94 Figure A-1 Life-Saving Tower 101 Figure A-2 Nishiki Tower 102 Figure A-3 Refuge at Shirahama Beach Resort 103 Figure A-4 Tsunami refuge in Kaifu, Japan 104 Figure A-5 Berm constructed for tsunami refuge in Aonae, Japan 104 Figure A-6 Aonae Elementary School. Upper floors are intended for use as tsunami refuge space 105 Figure B-1 Hypothetical sketch of example community showing potential vertical evacuation structure sites and evacuation routes 107 Figure B-2 Example community inundation map 108 Figure B-3 Example community inundation flow velocity map 109 Figure B-4 Example escape berm design 110 Figure B-5 Example escape berm plan layout 111 Figure B-6 Example escape berm section 111 Figure B-7 Example escape berm rear elevation 112 Figure B-8 Example gymnasium 113 Figure B-9 Example gymnasium plan 114 Figure B-10 Example gymnasium elevation 114 Figure C-1 Definition sketch for example calculations 117 Figure C-2 Condition resulting in buoyant forces 119 Figure D-1 Ranges of duration of impact 127 Figure E-1 Maximum flow velocity of depth, d, at the ground elevation, z, and maximum runup elevation, R 133     FEMA P646 List of Figures  PAGE xii FEMA P646 List of Figures  PAGE xiii @jmtux ^ _ a b m      + 궫zohhmH PsH Phh)mH PsH PhL_%mH PsH Phsh.OmH PsH PhsmH PsH PhshsmH PsH Phsh)mH PsH PhshZgdmH PsH Phmh.OmH PsH Phmh)mH PsH PhmmH PsH Phmh%mH PsH PhmhZgdmH PsH PhmhmmH PsH P)m b  ! . ( A-}@>sssssssssssssssssssssssss  % gd  % gd]f]gd]fs%%+ 1 l   ! , W r z  * + - : ⹮ĮĹččązhf9h[~mH PsH Ph)mH PsH Phf9hkbmH PsH Phf9h.OmH PsH Phf9hmH PsH Phf9hf9mH PsH Phf9h1mH PsH Phf9mH PsH Phh)mH PsH Phh.OmH PsH Phh1mH PsH PhhmH PsH PhmH PsH P- #$%'4UX\   *<F^)1zodzohF%hmH PsH PhF%h[~mH PsH PhF%h.OmH PsH PhkShmH PsH PhF%hF%mH PsH PhF%mH PsH PhkSmH PsH PhkSh.OmH PsH PhkShkSmH PsH PhkSh[~mH PsH Ph)h.OmH PsH Ph)hmH PsH Ph)mH PsH Ph)h)mH PsH Ph)h[~mH PsH P%12=>@MPQh)*,-9VWXY`ayz|<=?@Ϲzzzozohth.OmH PsH PhtmH PsH PhthtmH PsH Phth-mH PsH Ph;Rh-mH PsH Ph;Rh.OmH PsH Ph;Rh;RmH PsH Ph;Rh[~mH PsH PhF%hF%mH PsH PhF%h[~mH PsH PhF%h.OmH PsH PhF%hmH PsH PhF%mH PsH Ph;RmH PsH P(@Lm :;=>HIJx;=>HIESTVĹϹĮģϣxxtph-h4L] hh  hh-h.O h h  h h-hnh mH PsH Phnh-mH PsH Phnh.OmH PsH PhnhnmH PsH PhnhmH PsH PhnmH PsH Ph6:h.OmH PsH Ph6:mH PsH Ph6:h6:mH PsH Ph6:hmH PsH P*>>WV+x+&l!s9f/ssssssssssssssssssssssssss  % gd'  % gd4}  % gd]fVW   IJ`a}~=>LMRTUa'(*+ļıļhO, hoh'h'hhFh hvh4}h h'hN hS h4}hZgdh&iqh4} h4}h4} h-h-DJKWuw (*+45KL$%jklw ,239:>Abcopr~&˹ǹǹǹǹ˲DzDz h\hXM h9hXM hn#5hXMhXMh"I&hz6< hohFhyhLhF hCh%h%hO,h' hh'F&'568CDO\bcefopqr+,.89:Gd * + , 4 h{XhXM h $qhXM hPhXM h hXMhh*shFo6 h*shFohFoh hVEhXMhYrhO,h"I& h\hXMhXMC8 Z !,!I!y!!!M""#A#k####$>$j$$$%s%ssssssssssssssssssssssssss  gd*k  % gd(n  % gd4}4 5 7 H I N O W Y ! ! ! !(!*!+!,!E!G!T!Z!t!u!w!!!!!!!!!!!!!!"" """""3"H"I"K"M"T"U"X""""""""""""""¾¾ͺhh" h5h"h(nh@ehs* hshsh&h0hsh%hnhYrhFohO,hXMI"""""## # ###<#=#@#H#I#T#f#g#j#r#s#~################## $$$$$ $+$9$:$=$E$F$R$e$f$i$j$u$$$$$$$$$$%%%%%%.%/%0%1%hr*h*k6hh*k hphphp hsh(nhh(nhoVh%h@eh"L1%2%A%B%K%L%M%N%P%S%k%l%m%n%o%r%s%t%v%w%y%z%|%}%%%%%%%%%%%%%%%%%%%%%%%%ĽĬĽĬˌhve"h E0JOJQJmHnHuh0hE0JOJQJ!jh0hE0JOJQJU hhE huhEhEjhEU hsh*kh%hr*hr*h*k6h"hh*k h"6.s%u%v%x%y%{%|%~%%%%%%%%%%%%%%%%s  gd*kh]hgd]f]gd]f h]h^gd]f %^gd]f; 000&P1hP :pXr/ =!"x#$%k@@@ NormalCJ_HaJmH sH tH DA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No List 4@4 <Header  !4 @4 <Footer  !.)@. Page NumberhO"h mFTable of Contents Level 1 %dCJaJ|O2| mFATC Chapter Title#$d$dNa$5CJ8OJQJaJ8mH sH P^@BP mF Normal (Web)dd[$\$ B*PJph*W@Q* mFStrong5\HObH mFATC bodyhd`h B*CJphTOqT mF ATC body Char!B*CJ_HaJmH phsH tH 8Oa8 mF ATC body 1 `hOh mF ATC footer" !%$dN5CJOJPJQJaJ\O\ ZgdATC Figure LOF % `x^``CJaJHH  Balloon TextCJOJQJ^JaJF @ z@ z@ z@zaVImb!.( A- } @ > > WV+x+&l!s9f/8Z ,IyMAk>jsuvxy{|~00x0000000000000000000000 0000000000 000000 000000000 0 000000000000 00000 0 0 0 0 00000 0 000008080808080080080080000000 8aceh+ 1@V&4 "1%% !>s%%"%*15RY^h!!8@0(  B S  ?      |    T        T          $  \  { ,{ D    |    \    $  d    ^  ^  _  T     55>qqIIR"77?^^h       <HH{{PXX!''>DDgmm     9 #*urn:schemas-microsoft-com:office:smarttagsplaceB*urn:schemas-microsoft-com:office:smarttagscountry-region8"*urn:schemas-microsoft-com:office:smarttagsCity=*urn:schemas-microsoft-com:office:smarttags PlaceName=*urn:schemas-microsoft-com:office:smarttags PlaceType9!*urn:schemas-microsoft-com:office:smarttagsState            !+%.w|AIJOfk{"puGW! % & )  h l m r  # ' @ J  h s 7>^g[_\asV^s::ssYJ89bSo K 3mK4 Q(S7>s,;87+^89lC>*<yD$m|oG) PK̡j9Lа@8P"SVd%qXWq@ZNc']b,Hgal4 |Ed?kj>s,tqp2\]vt`0^`0o(0^`0o(.@ 0@ ^@ `0o(..x0x^x`0o(... ^`o( .... PP^P`o( ..... `^``o( ...... (#`(#^(#``o(....... ((^(`o(........0^`0o(@ 0@ ^@ `0o(.0^`0o(.. 0 ^ `0o(... %%^%`o( .... h.h.^h.`o( ..... @8`@8^@8``o( ...... @`@^@``o(....... JJ^J`o(........ 0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........hh^h`o(^`o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(0^`0o(.@ 0@ ^@ `0o(..x0x^x`0o(... ^`o( .... PP^P`o( ..... `^``o( ...... (#`(#^(#``o(....... ((^(`o(........0^`0o(p0p^p`0o(.0^`0OJPJQJ^J..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(-0^`0o(-.0^`0o(-.. ^`o( -... X X ^X `o( -.... `'``'^`'``o( -..... -`-^-``o(-...... 44^4`o(-.......hh^h`o(^`o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........hh^h`o(^`o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........ xx^x`OJPJQJ^Jo(HH^H`OJ QJ ^J o(hHo^`OJ QJ o(hH^`OJQJo(hH^`OJ QJ ^J o(hHo^`OJ QJ o(hHX X ^X `OJQJo(hH(#(#^(#`OJ QJ ^J o(hHo%%^%`OJ QJ o(hH0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(0^`0o(.@ 0@ ^@ `0o(..x0x^x`0o(... ^`o( .... PP^P`o( ..... `^``o( ...... (#`(#^(#``o(....... ((^(`o(........0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(-0^`0o(-.0^`0o(-.. ^`o( -... X X ^X `o( -.... `'``'^`'``o( -..... -`-^-``o(-...... 44^4`o(-.......0^`0o(0^`0o(.@ 0@ ^@ `0o(..x0x^x`0o(... ^`o( .... PP^P`o( ..... `^``o( ...... (#`(#^(#``o(....... ((^(`o(........hh^h`o(^`o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(.0^`0OJPJQJ^J..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........ 0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........0^`0o(p0p^p`0o(.0^`0o(..0^`0o(... ^`o( .... X X ^X `o( ..... `'``'^`'``o( ...... -`-^-``o(....... 44^4`o(........kjq@ZYJ89qXWoG;87Kj9Lc']SV]v^89HgaSo tq PK@8PyDlCQ(S7|Ed 3j"        $# >@%5^ [LV  M M. ?$-EIYl)6~~SUt NM` 7 C -!U"ve" `#$F%.\%L_%G&"I&&S'<"+O,"o-1p-3@.o.Q/"B0[011\22X2^2;%4O4 5zz5-7e(86::~:p;<z6<> y@v4ddd 3qHX)?>@Table of Contents Heriberto Torruella Riosh                  Oh+'0 , H T ` lxTable of Contents NormalHeriberto Torruella Rios7Microsoft Word 10.0@T @%/@ Rg@ :3ge՜.+,0 hp  Baldridge and Associates5d Table of Contents Title  !"#%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXY[\]^_`acdefghilRoot Entry F R:gn1Table$QjWordDocument=FSummaryInformation(ZDocumentSummaryInformation8bCompObjj  FMicrosoft Word Document MSWordDocWord.Document.89q